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Timing  Recovery  in  Digital  Synchronous 
Data Receivers 

KURT H. MUELLER AND MARKUS MULLER 

Abstract-A new  class of fast-converging  timing  recovery methods small loop gains the residual jitter is proportional  and convergence time 
for  synchronous digital data receivers is investigated. Starting  with  a  is inversely proportional to the  loop gain. The  proposed  algorithms  are 
worst-case  timing offset, convergence  with random  binary  data will simple and  economic to implement.  They  apply to binary or multi- 
typically  occur  within 10-20 symbols.  The  input signal is sampled at  level PAM signals  as  well  as to partial  response signals. 
the  baud  rate;  these  samples  are  then processed to  derive  a  suitable 
control signal to adjust the timing  phase. A general method is outlined 
to obtain  near-minimum-variance  estimates  of  the  timing  offset  with 
respect to  a given steady-state  sampling  criterion.  Although we  make 
certain  independence  assumptions  between successive  samples and 
postulate ideal  decisions to obtain  convenient  analytical  results,  our 
simulations  with  a  decision-directed  reference  and  baud-to-baud  adjust- 
ments yield  very  similar  results.  Convergence is exponential,  and  for 
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I .  INTRODUCTION 

S YMBOL synchronization  or timing recovery is one  of  the 
most  critical receiver functions in synchronous  communica- 

tion systems. The receiver clock must be continuously  adjusted 
in its  frequency  and phase to optimize the sampling instants  of 
the received data signal and to compensate for  frequency  drifts 
between  the oscillators used in the  transmitter and receiver 
clock  circuits. For  binary  or multilevel PAM signals, several 
timing recovery methods are  known [ l ]  -[9]. The  timing 
information is usually derived from  the  data signal itself and 
based on some  meaningful optimization  criterion which dete-r- 
mines the  steady-state  location of the timing instants. A crude 
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distinction can be  made  between  three  different kinds of 
methods. 

Class A :  The  threshold crossings of  the received baseband 
data signal (at zero if the signal is binary,  or halfway between 
the reference levels if the signal is multilevel) are compared 
with  the sampling  phase. A  correction of the sampling phase 
is initiated as a result of  this  comparison.  The mean location of 
the crossings is estimated and the  optimum sampling instant 
and  maximum eye opening are assumed to  be halfway between 
these crossings. 

CZass B: This method uses the signal derivative at  the sam- 
pling instants. This  derivative, or at least its sign, is usually 
correlated with  the  estimated  data  to  produce  the  updating 
information required for  the timing control  loop.  The re- 
sulting sampling phase is such  that  the mean  square error be- 
tween the signal and the  appropriate reference levels is mini- 
mized,  or,  with slight changes, such  that sampling will occur 
at  the peak  of the impulse  response. 

Systems  of class A and class B have been investigated by 
Saltzberg [4] ; timing recovery systems of class B have been 
described  by Chang [5] , Gitlin  and Salz [6] , and Kobayashi 

1 [7].  Both schemes  can be used with  a variety of  algorithms 
within the  control  loop:  adjustments  can  be made  in  incre- 
ments  that are error  proportional  or  fixed, averaging may or 
may not  be used prior to  adjustments, dead zones  can be 
introduced, and different  parameters  can be used during 
the initial  training mode and  during the  subsequent tracking 
mode.  Both  types  of systems operate  on  the baseband sig- 
nal. 

CZuss C: A spectral  line at  the clock frequency  (or  at  a 
multiple  of  this frequency) is filtered out  with  a  ‘narrow- 
band loop. Since such lines are not ordinarily encountered 
in bandwidth-efficient  systems, some nonlinear processing of 
the signal is used to generate such lines.  An  early  proposal 
of  such a scheme is due  to  Bennett [8]. Square law devices 
have been  investigated by Takasaki [9] and Franks and 
Bubrouski [ 1 O ]  . An advantage of these  systems is their  ability 
to  work  with  either  the baseband or  the passband signal. 
However, performance  with  narrow-band near-Nyquist-limited 
systems is usually marginal since the recovered timing wave- 
form  amplitude and the SNR depend  on  the system’s excess 
bandwidth. Timing  recovery  systems of  the class C type are 
often used in PCM-repeaters because of  their comparatively 
simple implementation. 

The best  timing phase for  a given system will depend  on  the 
overall impulse response and thus  on  the characteristics  of the 
communication channel.  This is not only  because  of the  un- 
known delay  which is introduced  by  the  channel.  The main 
problems are caused  by noise and  linear distortion  (intersym- 
bo1 interference); these disturbances can severely limit  the 
performance of a timing  recovery loop. In some  investigations 
[ I  11 , [ 121 an impulse response which is limited to  one sig- 
naling interval is assumed; this seems unrealistic for  band- 
limited’channels. In such channels, particularly if they are 
near-Nyquist-limited,  the level transitions will be  distributed 
over a large part of the signaling interval. Even in the absence 
of noise and  distortion, timing information using threshold 

crossing methods (class A) can thus be obtained reliably only 
by averaging over a large number  of  transitions. This is not  a 
serious drawback during steady-state  tracking,  but  it  tends  to 
increase the initial  training time. Similar considerations  apply 
for  methods based on classes B  and C. 

The  mentioned timing  recovery  systems are usually imple- 
mented  after several signal processing operations have taken 
place: the received signal is filtered,  demodulated, filtered 
again, and probably passed through an automatic equalizer. 
For most of these operations, analog signal processing has  been 
used and still is in use today.  The signal that is needed to  
derive timing information is thus usually a  continuous signal ’ 

in both time  and amplitude. Threshold crossing information  or 
the derivative are easily obtained to  realize a particular  timing 

In  the  current  trend  towards fully  digital receivers using 
medium- and large-scale integration (MSI and LSI) technology, 
we are confronted  with  a somewhat different  situation.  The 
signal in  such a receiver is sampled  and A/D converted at  the 
input.  It is available only  at discrete  time  intervals for  further 
processing. Basically, sampling could  be  performed  at  a high 
enough rate to allow a  complete  reconstruction  of  the signal. 
Analog  timing  recovery schemes could then  be “digitized” 
and  would still perform in a  functionally equivalent  way. 
However,  such  an approach is often  a  complex and expensive 
solution which leaves much to  be desired. The high A/D  con- 
version rate  that is needed  with  such  a scheme  may be’another 
serious drawback.  Furthermore,  it is desirable to sample in 
synchronism with  the  baud rate  and many systems  actually 
use only  one sample per baud interval for signal processing; 
for example in digital automatic equalizers [ 131 or in digital 
demodulators [14]. Such  a low sampling rate is justified 
because the final  decisions at  the  output are also based on sam- 
ples taken  at  the baud rate and the behavior  of the  data sig- 
nal between  the sampling instants is immaterial. Note  that 
baud  sampling will not  permit  an  exact signal reconstruction 
by interpolation  techniques,  except in the case of a baseband 
signal which is strictly  limited to  the  Nyquist  frequency (i.e., 
half the signaling rate). The  information required by all pre- 
viously mentioned timing recovery schemes will just  not be 
available with  baud sampling. The use of  higher  sampling  rates 
or  additonal sampling of  the signal derivative for timing recov- 
ery  reasons  does not seem to  be an  appealing solution.  Ob- 
viously, a new approach is needed. 

Another difference between analog  and digital processing 
is depicted in Fig. 1  for  the simple case of a  synchronous 
baseband data receiver. In the analog version the signal is sam- 
pled after processing and  conditioning, whereas  in the digital 
receiver the  unconditioned and probably  distorted signal is 
sampled.  Timing  recovery from  the digitized signal must 
always be achieved with  a feedback loop, in contrast  to ana- 
log processing where nonfeedback schemes  are  possible. 

In this  paper, we investigate  some new methods suitable for 
timing  recovery  in digital synchronous  data receivers. Sampling 
is assumed at  the  baud rate. Updating  information  for  the 
control  loop is derived from these  samples  and the  estimated 
data values in a simple and straightforward way without  the 

loop. 
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Fig. 1. Block w diagram of recovery Timing timing  recovery loop  for  baseband  data 

receiver. (a) Analog  signal  processing. (b) Digital  signal  processing. 

need of  any  further signal information.  Our discussion will 
be  limited to  baseband signaling. This is justified because the 
more  important linear modulation  methods allow the  concept 
of .an equivalent  baseband channel  for system  modeling [ 151 . 
We realize, however,  that in a general data receiver, the  adap- 
tive loops  for  timing recovery,  carrier phase control, and auto- 
matic  equalization  do  not  work  independently  of each other 
when  jointly  operated,  and  interaction  must  be carefully in- 
vestigated. Such aspects have been  studied  for analog  timing 
loops using signal differentiation [ S I ,  [ 7 ] .  In the present 
paper, we will concentrate  on timing  recovery alone,  but  joint 
operation  with  other receiver parameters is under investiga- 
tion and will be reported in a  future  publication. 

After a short review of the timing problem we  will outline 
how timing information can be derived from  the samples of 
the impulse  response.  Since  these  samples  are not available 
during transmission, a  technique will be presented to  obtain 
estimates  directly  from  the signal samples. We will derive a 
bound  for  the  minimum variance of these estimates  and show 
how  suboptimum  estimates, suitable for simple implementa- 
tion, can be  obtained, which are close to  this  minimum.  The 
method will be illustrated  with some  practical examples. As 
a  next  step,  the convergence  behavior  of a timing control 
loop  that uses these estimates in a  stochastic  adjustment 
algorithm will be  studied.  Finally, we  will present several 
computer  simulations  that  confirm  the fast,  convergence 
properties, even with  a decision-directed start-up. 

11. REVIEW OF  THE TIMING RECOVERY PROBLEM 

Let us  consider a  synchronous baseband data transmission 
system with  an overall impulse  response h(t); its  output can 
then  be described as 

x ( t )  = a,h(t - kT)  + n(t) 
k 

where n(t) represents  some  additive Gaussian noise. The ah’s 
are data  symbols chosen with equal probability and indepen- 
dently  from previous symbols  from a set of L equidistant 
values. Assume now,  that  the signal is sampled at  instants 
t = r + mT; then 

c 

The  term h(r) represents a gain factor which depends  both on 
the overall system  attenuation and the sampling  phase 7. 

Within the  brackets,  two terms  appear  in addition to  the  de- 
sired data value a, : The first one1 is caused by  intersymbol 
interference;  it disappears if h ( ~  + iT) = 6 i o ,  i.e., if the im- 
pulse response satisfies the Nyquist criterion. Since all echoes 
h(7 + iT) are functions of r ,  it is clear that  the  intersymbol 
interference is heavily influenced  by the choice  of the sam- 
pling phase. The remaining term is due to additive noise which 
is assumed to  be  a  stationary,  zero mean random process. The 
sampling phase should  ideally be chosen  in such  a way as to  
minimize error  probability;  but  for practical implementation 
more  convenient  suboptimal  criteria are preferable,  such as 
sampling at  the  maximum-eye  opening (minimum intersymbol 
interference),  or minimizing the mean  square error.  It is well 
known  that,  for these two objectives, the  peak  distortion D 
and the mean  square distortion e are appropriate  quality mea- 
sures [ 151 defined  by 

where we have used the  short  notation hi = h(r + iT) for  con- 
venience. A channel is distortion free if a  particular phase TO 
exists such  that D ( T ~ )  = ~ ( 7 ~ )  = 0. Whether the  channel is 
distortion free or  not,  the usual  objective is to find a phase 
T that minimizes one of the  performance measures (3) or (4). 
One  obvious approach is to  compute  the partial derivative of 
the  performance measure with respect to  r and  make propor- 
tional timing updates in the  opposite  direction.  Such  steepest 
descent  gradient  algorithms will stop adjusting once  the  de- 
sired optimum phase is reached. Note  that, instead of  the  men- 
tioned derivative,  any other  (monotonic)  function of r could 
be  used, provided it  has  the same root,  or  at least one  that is 
close.  This fact is used in the  threshold crossing  schemes dis- 
cussed earlier. It also points  the way for solving our  problem 
at  hand: all that is required is a timing function f(7) that can 
be efficiently computed  from  baud-spaced signal samples 
and  whose root is close to  the  minimum  of  a  reasonably, 
chosen performance measure.  This will be  done in two  steps: 
we  will first derive our timing function  from  the impulse re- 
sponse, and then, in a second step,  show  how  this timing func- 
tion  (or  estimates  of  it) can be derived from  the signal samples 

A  prime on a  summation  indicates  deletion of the zeroth  term. 
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111. RELATING  TIMING  TO THE IMPULSE RESPONSE 

In  the  present  study we will limit  our investigations tolinear 
combinations  of  the samples of  the impulse  response,2  i.e., 
to timing  functions of the  type 

f(7) = &hi = UTh.  (5) 
i 

The  coefficients ui are  dimensionless,  and for  normalization, 
we wiil assume that  the received  signal power is unity.  Note 
also that we will only be  c,oncerned with reasonably band- 
limited  systems vm,, < l/T) whose  impulse  response oscil- 
lates over  several signaIing,intervals. 

The  timing  fuhction ( 5 )  will determine  the  transfer  charac- 
teristic of the  control  loop, and  the  resulting  steady-state 
timing,  phase will be  the  one  for which f(7) = 0 .  In the case  of 
ideal  Nyquist signaling this  should  of  course  be 7 = 0. For 
this  example, sihce h(t)  is even, it is  also easy to see that  the 
constraint 

uo = 0 ,  ui = -uPi, for i f  0 (6) 

will define  a class of  transfer  characteristics  which have odd 
symmetry arouild the origin.  This is preferable since it  guaran- 
tees that  offsets  of  both  polarities are  handled  symmetrically. 
To achieve the same  effect  with  an  odd  symmetry  impulse 
response (eig:, Class  IV or  bipolar  partial  response [ 171 ) the 
set of weights ui would be chosen  with even symmetry [18] . 
The combina t ion  of ( 5 )  and (6) requires that, for Nyquist sig- 
naling,f(Tj  be of the  form 

L 
f(7) = u,(h, - h-i) (7) 

i; 1 

in  order to  yield (in the absence  of distortion) an odd  symme- 
try  detector  characteristic.  Note that, in the  approach  just 
outlined,  timing  information is derived  from the  symmetry 
error  of  the  sampled  impulse  response. 

From  the large class of possible timing functions we will 
pick out  two  particular  ones  for  a  more detailed  discussion, 
namely 

Type A:  

f ( 7 ) = % ( h l  1 - h _ , ) = ~ [ h ( 7 + ~ - h ( 7 - T ) ] .  (8) 

Type B: 

f(7) = h ,  = hi7 + T ) .  (9) 

Here, type A refers  obviously to a first-order  symmetry  error, 
i.e., L = 1  and u1 =, 1/2 in (7). A class of algorithms  related 
to  type  A  has first  been  proposed by  Mueller and  Spaulding 
[19]. The  zero  forcing  of  the  first  trailing  echo hl was been 
mentioned  by  Lucky,  Salz,  and Weldon [ 151, and  some  pre- 
liminary  investigations  regarding both  functions have  been :e- 

'The impulse  response  can be  estimated  from  the sampled data 
signal; see Section IV. 

\ 

Fig. 2. Phase detector characteristics of a loop which forces h l  = 
h-1 (Nyquist  channel  with cosine  rolloff a). 

.2 .4 
% 

I 
Fig. 3. Phase detector characteristics of a loop which  forces hl = 

0 (Nyquist  channel with  rolloff 01). 

ported  by  the  authors of this paper [16]. Although  the  above 
timing  functions  represent a somewhat  subjective  choice, they 
are  nevertheless  probably the  most basic and  simple functions 
satisfying all the  requirements discussed earlier. Many of  the 
problems  that have to be  studied  with  other  timing  functions 
will be  highlighted in the discussion  of the  two  examples (8) 
and (9). 

The timing function  type A is plotted in Fig; 2 for  a Ny- 
quist pulse with various  rolloffs a. Note  the  excellent  linearity 
around  zero.  The  slope  at  zero  which  defines  the  phase  detector 
gain constant is only  mildly  affected  by the  bandwidth (it de- 
creases by  a  factor  of  two if a varies from 0 to 0.8). For a = 
0 we  have 

and it can  be  shown that this  holds also for  first-order  symme- 
try  errors  in  duobinary  or  bipolar signaling formats.  The  in- 
clusion of more  distant echos ( L  > 1)  would  yield  higher  order 
error  functions  which we will,  however,  not discuss at this 
time. 

The  corresponding  functions  for  scheme B are  shown in 
Fig. 3 ;  they  do  not  look nearly as nice,  and  because of the 
strongly  asymmetrical  transfer  behavior we would  intuitively 
judge  the  stability  of a control  loop based on this  timing 
information as rather  poor, especially for larger amounts of 
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excess bandwidth. However, we  will find  some advantages in 
a  moment when we discuss operation in the presence of dis- 
tortion.  For  zero excess bandwidth,  both schemes yield the 
same slope at  zero, i.e., for  a small offset  they will provide 
an identical correction.  The resulting sampling instants  for  a 
distorted pulse are shown in Fig. 4. Algorithms based ofl A 
will choose their  steady-state timing in  such  a way as to yield 
equal echoes hl and h Y l .  Algorithms based on B will take  the 
first zero crossing after  the main  pulse as their timing  refer- 
ence.  Note  that,  for  distorted signals, the  two  approaches will 
generally give different sampling phases. The sampling instants 
provided  by  scheme A will always be optimally  located  with 
even impulse  responses;  this  means that  both D(T) and E(T) 
are minimized in  the presence of amplitude  distortion  alone. 
For channels  where  phase distortion is the main impairment, 
scheme B may be better. This is illustrated in Fig. 5 for  a Ny- 
quist system with cosine  rolloff cx that  has been  degraded by 
quadratic delay d i ~ t o r t i o n . ~  For  tight  rolloff,  both  methods 
provide  timing  phases that result  in a larger distortion  than  the 
minimum  that could  be  achieved. For rolloffs above approx- 
imately cx = 0.3, scheme B coincides with  the  minimum;  in- 
deed for severe delay distortion  it is always superior to the 
symmetrical scheme A. For small delays the difference is not 
so significant, particularly  for rolloffs cx 2 0.4. When the 
main channel  impairment consists of rising delay distortion, 
the  linearity  of  the transfer characteristic is improved in 
scheme B and degraded  in  scheme A. 

During actual  data transmission the sampled impulse re- 
sponse is not  directly available to  determine fl~). In  the  next 
section we will therefore  show  how  a low Variance estimate z k  

whose expected value equals fl~) can be obtained  directly 
from  the signal samples. 

IV.  EXTRACTION OF TIMING INFORMATION 

Due to  the linear character of (1) and (5) it  makes sense 
to assume a linear  relationship for z k  in the  form 

z k   = g k T X k  (1 1) 

or alternatively 

is the signal vector at t = T + kT containing  the  last rn input 
samples, a h  is the  corresponding  data vector 

and ek = x k  - is the associated error  vector.  The objective 
is to  obtain,  through  appropriate choice of the weighting 
vector g k ,  a good estimate of fl~). The  elements of g k  are 

Fig. 4. Resulting  sampling instants  with  two  different timing func- 
tions. (a) 2f(7) = h(7 + 7') - h(7 - 7'). (b)f(r) = h(7 + n. 

(yet undefined) functions of the  data  symbols 

gk=\ I 
\gm ( a h  -m + 19 a k  )/ 

Obviously these elements  cannot be constants since this  would 
make z k  the  output of a nonrecursive tranhversal filter  and 
such an arrangement  would not provide  any timing  informa- 
tion.  Note  that g k  is assumed to depend  only  on  data values 
contained within ah, but  this is no serious restriction since 
some function gi can always be  set zero  to  make z k  dependent 
on "outside  data." 

For  our  further analysis, we  will need both  the  mean  and 
the variance of z k .  We will first discuss the  expected value of 
(1 l), which is unbiased  by  additive zero  mean noise. The  for- 
mation of the  expected value can be split up  into two opera- 
tions [20] , 

Because g k  cfepends only  on  data  symbols  that are contained 
within the  v&ctor a h ,  the  inner  conditional  expected value 
can be written as 

where we have introduced  a new vector v k  = E{xk /ak}  whose 
components are given by 

The  conditional  expected value of x k  is a linear function  of 
the 2m - 1 samples h,  - m ,  ..., h,, ..., hm - of  the system 
impulse  response.  This can be  stated  more clearly in the 
form 

Vk = E { X k / a k }  = A k T h  (19) 

where h contains  the samples of the  above-mentioned  trun- 
cated impulse  response  and A h  is a (2m - 1)*m matrix Delay pT at  Nyquist  frequency. 
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Fig. 5. Peak distortion  for  channels  with cosine rolloff 01 and 
quadratic  delay  distortion. 
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By combining (16), (17), and (19) we obtain 

E { z k }  = h T E { A k g k } .  

The expectation  of  the  product  of  a signal vector  and  a  data 
dependent weighting  vector is thus  a linear function  of  the 
samples of h(t) ,  precisely  as  we have  specified for  our  timing 
function ( 5 ) .  The mean  of (12) is obtained  in  an  equivalent 
way > 

E k k  Tek  1 = E { g k   T X k  1 - h O E { g k   T a k  1 ( 2 2 )  

where the second term yields  a constant  that can either  be 
made  zero  or used to offset  some bias in the first term (e.g., 
dependence  on ho) .  

A block  diagram  of a subsystem using these  principles to 
extract  timing  information is depicted in Fig. 6. Data  or  error 
samples  are  entered into  an m tap transversal  filter-like struc- 
ture;  but  it is important to  note  that  the weighting  coefficients 
are functions  of  the  data  symbols and  are thus changing at 
the  symbol  rate.  Such  a  function can be linear or  nonlinear 
and involve one, several,  or all data values of a h .  The resulting 
coefficients  can  be  digital  numbers  requiring  representation 
with  one  or several bits. With the  exception  of  the  most sim- 
ple examples  (e.g.,  a  memory  of  only  two  symbols),  the 
generation  of g k  is most  efficiently  accomplished  with  a 
read-only memory (ROM) that  contains  the  appropriate  truth 
table. 

so far we  have not discussed the  computation  of g k .  Be- 
fore  this is done we will determine  the variance of z k  because 
this will be  a  measure for  the  mean  square  error involved in 
the  estimate  off(7). First we evaluate 

E { z k 2 }   = E { g k T X k - y k T g k }   = E { g k T E I X k X k T / a k l g k } .  (13) 

The  elements mij of the m X m matrixMk = E ( x k x k T / a k }  are 
given  by 
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- - - - - - - - - - - - - - - - - - 
- -1 gonal to  the  data vector a h  ; but we will say more about  that in 

the  next  section. Finally, we would  like to  point  out  that  only 

with variance u2 is included  in our analysis. The  matrix Q 
must  then be replaced by Q + p21; the mean of z k  remains 

o r  e r  minor modifications  occur if additive  white Gaussian noise 

"k unchanged. 
hf. 

V. CHOOSING THE WEIGHTING VECTOR 

The weighting  vector g k  has to be selected according to  

E { Z k }  =f(T) = hTU (30) 

in  order to yield an unbiased estimate of AT). From (1 l), 
I I (21),  and  (30) we  see that  this requires 
L _ - - _ _ _ _ _ - _ - - _ _ _ _ _ _  A 

Fig. 6.  Generalized block diagram of the proposed  timing  recovery 
scheme (shown for rn = 3). E { A k g k }  = U .  (3 1) 

otherwise 

and thus 
Recall that E2{ z k }  is a  constant and that g k ,  M k ,  and A h  are 
depending  only on the m data values contained in a h .  The 
expected values in (32) are thus sums of individual functions 
g(ah), each weighted with the  probability of its a h ,  and the 
extremum is found by setting 

The  matrix  (24) can now be more conveniently  expressed as for each  This yields 

The same result  would have been obtained by introducing  a 
where the  elements of Q are defined by  the second term in variation g k  + y6gk and  then requiring 
(26). The second moment of z k  can be written as 

and the variance of z k  becomes 

S = E { Z k 2 }   - E 2 { Z k }  

If we assume for  the  moment  that M k  is nonsingular, the  op- 
timum g k  may be expressed as 

The results  show that  the variance of z k  depends very The second equation of ( 3 3 )  requires that 
strongly on g k .  It 'is interesting to  note  that  the  matrix does 
not  contain  the main  sample ho ; thus, if the channel is ideal 
and if the  correct timing  phase is used, we conclude  that Q = so that finally 
0 and v k  = hoak.  The variance will then be a  function o f  the 
inner  product g k T a k  and will be  zero if g k  is chosen ortho- g!, opt  = M k - l A k T ~ - l { A k M k - l A k T } U .  (3 8) 

= 2 E - ' { A k M k - ' A k T ) U  (37) 



MUELLER AND MULLER: TIMING RECOVERY IN DATA RECEIVERS 523 

This  formal solution can be inserted into (22) and will then 
, yield a  minimum variance 

(39) 
. . ,  

A few comments are in order to  the above results. First we 
recall that  the  matrix Q can become very small in the vicinity 
of the  optimum timing instant since it  does  not  depend  on 
the main pulse ho. Mk will then be ill-conditioned since it is 
mainly  determined  by the singular matrix vk vk  T. Singularity 
of hfk can of  course always be avoided if a noise term 021 is 
added to Q. Nevertheless, the evaluation of (38) can become 
quite involved. Furthermore, since g k o p t  depends  on Mk and 
thus  on Q, the  optimum weighting  vector is a  function of the 
impulse response and is therefore influenced  by the channel 
characteristics and,  most  important, by the timing offset 
itself. For  this  reason,  any fixed weighting  vector g k  can only 
be optimum  for  one :special situation. We can thus  interpret 
(39) as a lower bound.  The variance associated with  a fixed g k  

can then  be compared with  this lower bound  for  a variety of 
channel  parameters. This will be done  later  on when we have 
developed some  particularly simple examples  for g k  . Instead of 
evaluating (38)  for some specific channels, we  will in the 
following  propose a simple, suboptimum,  channel-independent 
approach  to  the probl.em which will lead us to  a  number of 
interestinggk's. 

'.it. 

Condition (3 1) may be expressed as 

where the  components  of dk are zero mean random variables.' 
The  choice  of the  random vector dk will affect  the variance of 
zk according to  

which suggests that we keep dk as small as possible; this  ap- 
plies in particular to  the  center  components  that are weighted 
with  the usually large center samples of h. Of course, d k  can- 
not be selected arbitrarily, since the system (40) defines 2m - 
1 equations  for  the m components of gk and the 2m - 1 ele- 
ments of d k  with  the already mentioned zero  mean constraint 
for d k .  The weighting  vector gk would  of  course be  uniquely 
specified by choosing m independent  equations of the sys- 
tem (40), 

Akmgk =urn  +dkrn .  (42) 

element  of u must also be  zero t o  avoid any  appearance of ho 
in E{Zk} in order to  allow for  proper  operation of the  control 
loop as has been  mentioned in Section I11 while discussing the 
choice  of u.  

In  practice,  it seems to  be  a logical start  to select the m 
'.equations (42) symmetrically around  the  center of the original 
system, i.e., blocking out an m X m square from  the  rectangu- 
lar matrix  Ah.  In  addition, we would try to set all components 
of dkm equal to  zero in  a first approach,  thereby avoiding in 
the main term  of S all contributions  of  the usually largest 
samples in the vicinity of ho. Thus we obtain  a  tentative solu- 
tion 

which  needs to  be checked against the remaining equations 
of the set (40). If those are not satisfied, we can try again, 
this time allowing nonzero values for  at least  some  of the 
noncenter d k m  elements  or  probably choosing different 
equations. On the  other  hand,  a slight deviation from  the 
specified u may be  entirely  tolerable.  Although  this  method 
may sound  somewhat  heuristic,  it nevertheless proved to  be 
quite efficient  and  convenient  in practice. Those who may 
prefer to  determine  the  optimum weighting  vector directly 
from (38) must bear  in  mind that  the  components of g k  are 
rational  functions of the  elements of u.  Such  a  solution  would 
also depend  on  the channel  and on timing  offset  itself. For 
computer  evaluation, special formula-manipulation programs 
like M A T H L A B ,   A L P A K ,  or S Y M B A L  may thus  be required. 
At many  computer sites  such  compilers do  not  exist. 

Finally we mention  that  the alternative approach (12) 
based on  the  error signal will of course always yield a  low 
variance timing estimate since the  components of f?k are 
given by 

and do  not  contain  the  main sample h,. The variance S 
will thus also be  independent of ho. Note, however, that ho 
must  be  known  to apply this  technique. In practice,  this is 
not  a disadvantage since some kind of  automatic gain control 
(AGC)  will be used anyway to  ensure a  constant signal level 
for efficient operation  of  the  A/D  converter.  For more  accu- 
racy, ho can be learned from  the signal itself after an  initial 
estimate  has  been used to  start  the process. 

Which equations  should be chosen?  Certainly, all equations 
having a  nonzero  element in u must be considered. Further- 
more, we require the variance S to  be  independent of the  main  The  procedure of determining  a weighting  vector in accord- 
sample ho to  guarantee zero variance with  a Nyquist  channel  ance with  a given u ,  (i.e., timing function) and a specified 
operating  at  its  proper timing  phase.  This  implies that  the d k  memory  length m will be illustrated with some simple ex- 
component associated with ho is zero, which  in turn  means amples. For scheme A, based on (8) and m = 2, (40) reads 
that  the  center  equation of (40), namely 

VI. PRACTICAL EXAMPLES 

akTgk = 0, (43) (ai:1 :k )ti1) = (::)+ rf) (46) 

must belong to  the reduced system (42). Note  that  the  center ah-1 
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where we have already satisfied (43). One solution is 

L J 

and  that dk = 0 for binary  transmission. The variance of 
(49) can either be  evaluated from (41) and (48) or via direct 
calculation. After some manipulations we obtain 

where u2 is the variance of some  added zero  mean channel 
noise. The  term in the  brackets is unity  for binary signaling 
and  decreases with multilevel data.  Note  that,  except  for  this 
term,  the mean  square error  of  the  estimate  (49) is simply 
related to  the sum of the mean  square distortion and the 
SNR. 

Two possible implementations of (49) are shown  in Fig. 7. 
The realization  which uses only  one  quantizer seems prefer- 
able. Further, it should  be noted  that for  binary signaling with 
ah = +1 the  multiplier and summing arrangement is really 
reduced to a  controlled  adder-subtractor  and is thus  extremely 
simple. 

We will now proceed to  scheme B (zero  forcing of h l ) .  
Trying again m = 2 yields the trivial estimate 

which satisfies (9) and (30), but  not  (43); i.e.,  the variance 
still depends  on ho. This  can be avoided if  we use the  error 
signal ek instead of xk as defined  in (12) and (45). We obtain 
the new estimate 

which is very similar to (51). Since hl = 0 in the  steady- 
state timing position, we conclude  that  the variance (54) 

Fig. 7 .  Two  implementations of a type A system. 

will then be equal  to  the mean square  distortion plus the  SNR. 
The variance is roughly  reduced by  a  factor  of  two  for  the 
two-sample estimate (49) when  compared to  the one-sample 
estimate (53), as we would expect  due to  the  effect  of “aver- 
aging.” Observe, that for  this comparison, we have normalized 
f(~) =E{zk} to  yield  identical  slope at  the origin. An improved 
estimate could  be obtained by averaging over severalsymbols, 
in general, 

An alternate  solution, which  does not  contain ho, can  be 
derived from (40) if we allow m > 2. As an example,  for 
binary  data and m = 3 we get a weighting  vector 

Although a single estimate becomes more  accurate  for 
larger m’s, the  correlation  between succeeding estimates 
(if taken  at  the symbol rate as discussed in the  next section) 
increases and  decision errors will propagate over several 
estimates. If scheme B is used,  the calculations  required for 
each estimate  become  quite involved for rn > 3. The simple 
weighting  vectors discussed in the previous examples will 
be economic to implement  and will give satisfactory results 
so that  there seems to be little reason to give detailed  consid- 
eration  to  more  complex schemes. 

To illustrate  this point,  the variance (51) of the  estimate 
(49) and  the variance based on the weights (56) have been 
calculated as a  function of the timing  offset 7 for  a noiseless 
Nyquist channel with cosine  rolloff CY = 0.2 and random 
binary signaling. The results are depicted in Fig. 8 (dashed 
curves). Simultaneously we have evaluated the lower bound 
(39) associated with  the  appropriate timing functions (solid 
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Fig. 8. Variance of estimate zk  (dashed  curves) and  theoretical  mini- 
mum (solid  curves).  Curve A is estimate (49). Curve B is an  estimate 
based on ( 5 6 )  for 7 > 0. 

effects  contribute in a  dominant way to the  steady-state 
variance,  such further increase  in complexity will usually give 
only marginal improvements in  timing jitter. 

VII. LOOP BEHAVIOR AND CONVERGENCE 

The  estimates discussed so far will now be used for adaptive 
timing  recovery. Our timing control schemes will be such  that 
the (k + 1)th and the  kth  adjustment of the sampling phase 
are related by  the recursion 

An algorithm of  the above form will in general not  exactly 
“turn itself off” (unless y decreases to  zero) since z k  is a 
stochastic variable depending  on  the timing phase,  the impulse 
response, the  data  symbols,  and additive  noise.  This will cause 
some random  fluctuations (jitter) around  the  steady-state 
timing phase. The mean of  the  corrections will be zero for  a 
timing phase T~ such that 

and this  determines  of course the  steady-state sampling in- 
stant.  For  our  further discussion we will assume that  this 
is at 7- = 70 = 0, which is no  restriction since we could always 
define a  shift 

e = (7 -  to)/^. (59) 

We will also assume that 
0. 4 .8 1.2  1 6 2. 

Fig. 9. Variance of estimate z k  in  the presence of quadratic delay  dis- 
tortion. Curve a is estimate (49). Curve b is an  estimate based on 
( 5 6 ) .  Curve c is estimate (53). 

curves). For very small offsets,  the  actual mean  square error 
coincides with  the lower bound,  but even for larger offsets 
the  estimate based on  the  symmetry  error (curve A) yields a 
difference  of  only 1 or 2 dB.  This small difference is due to  
the  fact  that & o p t  depends  on  the impulse response and is 
thus  not identical to (47) except near the origin. However, 
for practical  purposes the difference is negligible and the 
fixed  weighting  can be considered  near optimum. 

The  estimates, in  general, are of course  particularly reli- 
able near the origin. For larger timing  deviations the  symbol 
estimation, which is needed if a- decision directed algorithm 
is used, becomes  unreliable anyway, so that  this region is of 
limited practical interest. On the  other  hand,  the mean  square 
error  for small offset will, for  many  channels,  be primarily 
determined  by noise and residual intersymbol  interference. 
This is shown  in Fig. 9 where the variance at  the  steady- 
state timing phase is plotted  for  different  amounts of  para- 
bolic  delay distortion. Included are estimates based on  (49), 
(53),  and  (56).  It is seen that,  among  this limited selection, 
the scheme based on  the  symmetry  error  performs  best. By 
increasing the  memory m, estimates  with still smaller variance 
can  of  course be obtained. But since noise and quantization 

Y k  = CT = constant. (60) 

This is in contrast  to  the usual (but unrealistic) stochastic 
approximation  procedure [21],  [22] where a gain constant 
is used that decreases to  zero. We thus  obtain  the recursion 

For  the  further analysis we  express the  estimate z k  as 

Here rk is a  zero mean random variable with variance S and 

i.e., the timing function is bounded  by  two straight  lines 
with slopes s1 and s a .  These bounds can be  quite  tight,  partic- 
ularly with timing functions  of  type  A which can  exhibit  a 
very linear transfer characteristic with  suitable chosen coeffi- 
cients. The recursion  (61)  can  now be expressed as 

We now  define 



I 526 IEEE  TRANSACTIONS ON COMMUNICATIONS, MAY 1976 

q k  = 2}. (65) small and thus  the behavior  of s and v around  the origin is 
given by the slopes 

Squaring both sides  of (64) and  taking expected values yields 

e = o  (74) 

The  expected value of  the  crossterm is zero if e k  and rk are 

./?{ekrk} depends  on  the  autocorrelation  products cE{rkrk-;} Therefore, the resulting jitter is 
with i > 0. Thus  some  interaction can be  expected with  timing 
estimates  that use m > 1 ,  and also due to  intersymbol  inter- 
ference.  However, if adjustments are made  at intervals NT 4 ,  = 
rather  than T ,  and if N is chosen large enough,  our  assumption 

uu 

assumed to be uncorrelated. A analysis shows that  rather  than  by  the  bounds used in'  the preceding approach. 

cs, 
(76) 

2so - c(so2 + vo2)  . 

will be j u ~ t i f i e d . ~  

dependent  intersymbol  interference  term.  The variance can 
S(0) is composed of a  constant noise term plus  an offset condition 

System  stability in the  steady  state is determined  by  the 

thus  be  bounded in a similar way as the  slope, i.e., A 0  = (1 - C S O ) ~  + c2vO2 < 1, (77) 

v 1 2 e 2  + s, G s(e) G ~~~e~ + s, (67) and thus requires 

where S ,  is the residual steady-state noise  (including some c < 
intersymbol  interference  if  the  channel is not ideal)  and so2 + vo2 ' 

v 1  and v2  are two  constants defining the segment of  the rms 
error. Again, as in (63), these bounds can be  quite  tight since The minimal Ao is achieved with 
for  many  estimates  the rms error is a relatively linear function 
of 0 (see Fig. 8). We now  obtain  from (66) SO 

230 

where  we have set  for convenience 

Amin = (1 - cs2)2 + c 2 v 1 2  

A m a x = ( l  -cS1)' + c2vZ2. 

and becomes 

(70) with  a resulting jitter 

The  bounds are thus defined by  a  first-order difference equa- S ,  CO 

tion.  To express its  solution in a  more  compact  form we define 4m = = -S, 
so2 + Y o 2  so 

cs, 

The  bounds can now be written as 

Note  that  the  quantities q m m i n  and (loomax are  lower  and 
upper  bounds  for  the  steady-state MS jitter. In practice,  this 
jitter can be precisely determined  without  the need for 
bounds. This is because the  jitter  amplitudes  can  be considered 

In many cases the  bounds  on s and v are close together  and  the 
convergence  behavior can,  with sufficient accuracy, be ex- 
pressed by so, YO, and A , .  

We will now discuss the convergence time.  Note,  from (73), 
that  the  steady-state,  jitter is reached  in  an exponential  way. 
We will, somewhat  arbitrarily,  define  the convergence time 
as the  number  of symbols  needed to  reduce the average rms 
jitter  to  one  percent  of  a signaling interval. Such  a small 
standard deviation cannot always be  obtained if c is initially 
selected  according to  (79), but basically q ,  can be made 
arbitrarily small by gear shifting to  a smaller c after initial 
training. We will neglect such considerations  for  the  moment 
and assume q ,  =' 0. The convergence  time is then  bounded  by 

For  most practical estimates Zk and  parameters c, the  expected value For the worst Offset where e = 05, a system 
of the  crossterm  (on a baud-to-baud basis) is indeed very  small. with  the  optimized  parameters (79) and (80) would have a 

In actual simulations  both  methods  yielded  about  identical  results. 
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convergence time 

527 

7.82 

In practice,  the initial offset is random  and will tend to  be 
uniformally distributed over -0.5 < 8 < 0.5. If this is taken 
into  account,  it  can  be  shown  that, in the  mean,  a convergence 
time about  25  percent  shorter  than’(83) can be expected. 
However, this figure is not very useful for practical  system 
design where enough  start-up  time  must  be allocated for 
worst case behavior. 

Since timing  recovery  schemes of  the  type described here 
are most likely to  be used in  digital receivers, some remarks 
should be made about  quantization  effects. Assume that 0 
can be adjusted  in increments p ;  then  adjustments will stop 
as soon as the  correction  term is smaller than  the  quantiza- 
tion interval, i.e., when 

This  dead  zone effect  can be avoided as long as 

P s O 2  + 2s08r + r2 >- P 2  
C2 

Whether or not,  at  any specified offset 0 ,  any  further  adjust- 
ment will occur  at  the  next  step will depend  on  both 8 itself 
and the  random variable r.  Taking expected values and assum- 
ing “separated”  adjustments we obtain  the  condition 

for  the MS jitter. Since this  must  hold even for  the  limit 
4 ; ,  we can  insert (76)  and obtain  after  a few manipulations 

“ “ “ ( - 3 + ( 3 - 2 > 0 .  P2 

The  minimum value c/co that satisfies  (87),  and thus avoids 
dead  zone effects  within  the  loop, is shown  in Fig. 10 as a 
function of the  parameter 

R = ? m  
P 

For R -+ 0 the curve would  asymptotically reach c -+ 2co. 
Although this is still within  the  stability range, it is generally 
undersirable to  make c > co and one would  preferably  set 
c = co and tolerate some  dead zone jitter in  systems with 
R < 1. 

VIII. SIMULATION RESULTS 

Numerical  evaluation of the results obtained in the previous 
section shows that timing can  indeed  be recovered with  only 

4 :  > 
f 1 Y P 16 

Fig. 10. Minimum value of loop gain c to avoid  dead zone  effects. 

TABLE I 
PARAMETERS s AND v FOR BINARY  NYQUIST  SIGNALING 

0.702 i 0.849 1.000 

0.826 0.963 

0.762 0.858 

0.675 0.702 

0.519 0 . 5 8 2  

0.333 0 . 5 0 0  

0.675 0.702 

0.519 0 . 5 8 2  

0.333 0 . 5 0 0  

0.849 I 1.000 

0.826 0.963 

0.762 0.858 

v v 

1.070 

0.851 

0.662 

0.504 

0.367 

0.239 

1.070 

0.851 

0.662 

0.504 

0.367 

0.239 

a small number  of  adjustments,  often less than  20. This  has 
been confirmed by  detailed  simulation studies which have 
also  shown that  our formulas tend  to be quite  accurate, and 
with  certain  restrictions, are even usable when adjustments 
are performed  at  the  symbol  rate. 

As an example, we  will investigate the  estimate (49). 
Table I shows the values of the  parameters s and v for  binary 
Nyquist signaling. For all rolloffs, the  bounds  of’s and v occur 
either  at 6 = 0 or 8 = 0.5. We select a  20  percent cosine 
rolloff channel  with a 26-dB SNR and  a  quantization of 
p = 1/256.  For a = 0.2, we obtain co = 0.58,  but  it is easy 
to verify that such a large value would yield unacceptable 
jitter  amplitudes in the presence of  channel impairments. 
Dead zone requirements  would  dictate c > 0.1. As a  com- 
promise between these extremes, we choose c = 0.2. This 
will yield acceptable jitter and avoid dead  zone effects.  The 
results  of  such a simulation are depicted in Fig. 11. Adapta- 
tion  starts  with  a  worst case timing  offset 8 = 0.5 (q = -6 dB) 
and settling occurs with  a final rms jitter f i= 0.0125 (-38.1 
dB) which agrees perfectly  with (76). Lower and upper  bounds 
for  the convergence have been plotted  from (73) as a compari- 
son ‘basis. With the particular parameters used in this simula- 
tion,  settling time  occurs within  20  adjustments, which  again, - 
agrees very closely with  the  theoretical results  of Section  VII, 

The  simulation results  in Fig. 11 have been  obtained  by 
averaging over a large numbe’r of adaptations, each with  a 
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Fig. 11. Convergence with algorithm based on estimate (49). 

different  data sequence. To bring  some  practical realism into 
this procedure, a 63-bit  maximum  length sequence has been 
used and  starting was assumed to be at  random; i.e., averaging 
was performed over the results obtained  with each of  the  63 
possible shifted  data  patterns. Such  a  sequence  would also be 
suitable for initial  training of an adaptive  equalizer. 

Similar simulations  for  other estimates have also shown 
good agreement with  the  theoretically predicted performance. 
Instead of discussing these  results  in detail, we will devote 
some space to related topics  that are of more practical signi- 
ficance’ to  the system  designer,  and we will modify  our  sub- 
sequent  simulations accordingly. 

First’ a few words will be said regarding the  data symbols 
ah that are required to  compute  the  estimates zk. With an 
initial  offset of  T/2  the first few decisions are practically 
uncorrelated  with  the  actual  data symbols. In‘theory, a synch- 
ronized  reference could be  provided at  the receiver, but this 
is not an attractive  solution since the  synchronization process 
would probably require more time than  the timing  recovery. 
The use of a  decision directed  reference, even during start- 
up, is a much more’ appealing scheme; i.e., the  data symbols 
are estimated  by suitable quantization of the signal samples. 
Because of the large initial error  rate  such a loop is hard  to 
analyze,  but  it cart conveniently be  investigated via simula- 
tion.  Second, we will make  adjustments  at each baud to 
obtain fast  convergence  in real. time. A somewhat larger value 
for F will be used initially and  then reduced by a factor  of 
four  after  30  adjustments  to  obtain a small steady-state 
timing jitter.  Finally, we will also demonstrate  the variabi- 
lity  of convergence as caused by  the training  sequence  itself, 
i.e., the choice of the  starting  point. This can most conveni- 
ently be done  by depicting the envelopes of all 63 curves. 
As previously,  a  rolloff a = 0.2, a 26-dB SNR, and  a quanti- 
zation p = 1/256 will be  used. 

Fig. 12(a) shows the  performance results of this modified 
loop, again with  the  estimate (49). The solid lines give upper 
and lower  bounds  for 8 ,  while the  dotted curve shows the rms 
value of the average jitter 4 as in Fig. 11, only  that we are now 
using a  linear scale. Convergence takes 5-15 symbols  depend- 
ing on the sequence start, which demonstrates  that careful 
optimization of the training pattern i s  very important  for 
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Fig. 12. Convergence behavior with estimate (49). (a) No distortion. 
(b) Quadratic delay distortion, p = 2. 

(b) 

rapid  acquisition. If the channel is noise free, a slight improve- 
ment is obtained, particularly in the  upper  bound,  but  for 
SNR’s as they  occur  at voice grade channels  (25-35  dB), 
convergence is almost unaffected by  noise. 

Fig. 12(b) demonstrates  the behavior of the same loop 
with a  channel that  exhibits  quadratic delay distortion (0 = 
2). The phase which  minimizes peak  distortion  has been 
chosen as the  reference, e.g., 7 = 0. The variance of  the  .con- 
vergence characteristics  has somewhat increased. The larger 
jitter,  of  course, is due to  the remaining intersymbol  inter- 
ference which, in turn causes a high ‘s-. This degradation is 
even enhanced by  the timing functions  inability  to  “find” 
exactly  the  maximum eye opening (see Section I1 and Fig. 5). 
In the case under  study,  settling occurs at a timing phase 
which  yields  a  peak distortion of 0.9 whereas  a value of 
0.7 could  be achieved with a more  optimum sampling instant. 
Decreasing c will thus  only  help  to a minor degree since a 
steady-state bias will remain. An algorithm  which  forces 
hl = 0 (scheme B) should  provide  superior steady-state 
behavior, at least for channels with delay distortion similar 
to  that used in our example.  This is depicted  in Fig. 13 where 
the same simulations have been  repeated with  the weighting 
vector (56). The average settling time  remains about  the 
same, the  upper  bound is increased  (particularly in the  un- 
distorted  channel),  but  the bias in  the presence of delay 
distortion is significantly reduced. A similar behavior can be 
expected  with  estimate (53) and is depicted in Fig. 14. Here 



MUELLER AND MULLER: TIMING RECOVERY IN DATA RECEIVERS 5 29 

P 
rn :.2 

0.0 

SNR r26d8 

2 Level 

0 20 40 60 80 N 
(a) 

M z.2 

0 . 2  

SNR ~ 2 6  d8 

2 Level 

0 20 40 60 80 N 
(b) 

Fig. 13. Convergence  behavior with weighting  vector ( 5 6 ) .  (a) No dis- 
tortion. (b) Quadratic  delay  distortion, p = 2 .  

ho is learned  simultaneously  with  the  timing phase  by  using 
the  linear  recursion 

where  we have set E = 118. 
Remember  that  a decision-directed  reference  has  been used 

in  the preceding  simulations.  The use of’ an ideal  reference 
was found to  yield  only a minor  improvement in mean  con- 
vergence time; even the decrease  of the  worst case bound is 
not  that significant.  The  reason  for  this may  be  that  the large 
corrections  occurring  within  the  first  few  adjustments will 
rapidly  shift the phase away  from  its  initial 0 = 0.5 position. 
It is unimportant  in which  direction  this  shift  takes  place; 
the reliability of  the decisions will always  improve,  and  the 
loop will be  able to  “lock  in.”  Our  experience  indicates that 
this is not necessarily true  with  multilevel signaling. Such 
signals  have shown  convergence  problems  with  decision- 
directed  start-up, even under ideal  channel  conditions.  The use 
of  an  ideal  reference is very  advantageous  in  such  situations. 
As an  example, Fig lS(a)  shows the  simulation results  of  a 
four-level  system using estimate (49). Note  that  the  26-dB 
SNR is now a more serious  degradation than  with  binary 
signaling, but even so, the  timing  loop  settles very rapidly. 
The  ideal  reference  is not needed if the  system is started  up 
with  a  binary signal first;  the  number of levels is then  increased 
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.o 7 -, D 
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Fig. 14. Convergence  behavior  with estimate (53). (a) No distortion. 
(b) Quadratic  delay  distortion, p = 3. 

(b) 

after  a specified  time.  The  behavior of such  a  system is demon- 
strated  in Fig. 15(b),  and one can conclude  that  this  approach 
provides an efficient  and highly practical  scheme  for  multi- 
level signaling. Similar  results have been  obtained in this case 
with  algorithms based on other  estimates. 

IX. CONCLUSIONS AND SUMMARY 
We have presented  a  new class of  timing  recovery  schemes 

for  synchronous  data receivers.  All information is derived from 
the Nyquist spaced signal samples  alone; no signal derivatives, 
zero crossings, square  law devices, or  narrow-band  filters 
are required.  Timing  corrections  are based on estimates  which 
are products  of  the sampled signal vector (or error  vector) 
and a weighting  vector  whose components  are  functions of 
the  data  symbols. The  expected value of  this  estimate  defines 
a  timing  function f(~) which is of crucial importance  for 
both  the  transfer  characteristic  of  the  control  loop  and  the 
resulting  steady-state  sampling  phase.  Examples  for  suitable 
choices off(.)  have been presented, and  a  procedure  has  been 
outlined to obtain  an  appropriate  weighting  vector  that will 
yield a low variance estimate. A bound  for  the  minimum vari- 
ance  has  been given, and  it was demonstrated  that results 
close to  this  bound can be practically  achieved.  Due to this 
small  variance  very  rapid convergence is obtained  when  these 
estimates  are used in a timing loop with  a  stochastic  adjust- 
ment  algorithm. The  theoretical  results  regarding  lower  and 
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Fig. 15. Convergence  behavior  of four-level signal. (a) Ideal  reference. 

(b)  Estimated  reference  with two-level start-up. 

upper  bounds  on convergence as well as residual jitter have 
been very well confirmed by  simulations. Our analysis was 
based on  certain  independence  assumptions and on  the availa- 
bility of an ideal  reference signal, but  these  do  not seem to 
be  restricting ‘requirements.  In  fact,  a large number of simula- 
tions using a decision-directed  reference and’  baud-to-baud 
adjustment (where some dependence  between  adjacent esti- 
mates exists) have shown very similar results. For  multi- 
level systems with decision-directed reference,  it is necessary 
to sta.rt up, with  two levels first,  and  then switch to  more 
levels’ after a certain  number  of symbols. For binary  data, 
convergence can be obtained in less than 20 symbols. For 
channels with negligible or small distortion,  estimates based 
on  the  symmetry  error  of  the sampled impulse  response seem 
to be  preferable to all others since they yield timing functions 
of odd  symmetry  (detector characteristic), and can provide 
very small variance over a wide range of offsets.  However, 
if distortion is severe, the  “symmetric”  estimates may produce 
more  steady-state  offset  than is acceptable,  and  other schemes, 
e.g., forcing = 0, can give superior  results in this  respect. 
Noise levels as they are  likely to occur  on voice grade tele- 
phone channels have little  influence  on  the rapid  convergence. 
Steady-state  jitter decreases with decreasing loop gain, but  the 
loop gain cannot be  reduced arbitrarily because of dead zone 
effects  due to finite  timing  resolution. A good compromise 
between these requirements  can, however,  be rather easily 

established. To achieve both fast convergence and low  jitter, 
a gearshifting arrangement for  the  loop gain may  be  used. 
Finally, it should  be mentioned  that  the  timing recovery 
schemes presented  here are extremely suitable for receivers 
based on digital processing. The necessary computations are 
very simple;  in some’ estimates  a single addition  or  subtraction 
is  all that is required. 
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The  Capture Effect in FM Receivers 
KRIJN LEENTVAAR AND JAN H. FLINT 

Absfrucf-In  this  paper  a  theoretical  explanation of the  capture 
effect is given by  calculating the  instantaneous  frequency of the  out- 
put signal of  a  limiter  when two  frequency  modulated  (FM) signals are 
present at  the  limiter  input. When this signal is applied to a  demodulator 
with  unlimited  bandwidth, the  output signal of  the  demodulator  proves 
to have an  extreme  capture  effect. When however the  demodulator 
bandwidth is limited,  the  capture  effect is shown not  be  be  extreme. 
This  phenomenon is explained  and possibilities are given to minimize 
the  capture  effect. 

Some  of  the  results of measurements  on  limiters  and  demodulators 
are given in this  paper;  they  prove  that  a weak capture  effect can be 
obtained. A method  of  calculating  the  degree  of  capturing is included. 

INTRODUCTION 

HEN a  frequency  modulated (FM)  receiver  has two 
different FM signals with  unequal  amplitudes falling 

within  the  passband  at  the same time,  the  modulation of the 
weaker signal no longer  exists at  the  demodulator  output  or  at 
least is attenuated  to  a very high  degree.  This also appears 
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when the  stronger signal is unmodulated. This phenomenon is 
known as the  capture  effect. 

In  this  paper,  first the phasor  diagram will be  considered by 
which it is possible to  calculate the  output signal of a  limiter 
and  its instantaneous  frequency when two FM signals  are 
present  at  the  limiter  input.  To  illustrate  the  problem  the  fre- 
quency  spectrum  of  the output signal is calculated.  A  function 
is given to express the mean  frequency  of  the  limiter output 
signal. 

It is possible to explain the  reduction  of  the  capture  effect 
by  limiting  the  bandwidth  of  the  demodulator. 

A  method of  calculating  these  effects is given for  a  Foster- 
Seely demodulator. 

I .  THE PHASOR DIAGRAM 

Suppose the  two  different signals at  the  input of the  limiter 
are al and u2.  These signals  are‘ shown  in Fig. 1. The signals 
may  be  expressed as 

ul = A l  cos = Re [Alej61] 

a2 = A ,  cos G2 = Re [ A z e i 6 2 ]  

where 


